Infection in cells

DNA and RNA in a cell

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg

Two common analysis goals

DNA Sequencing

- Fixed copy of a gene per cell
- Analysis goal:

Variant calling and interpretation

RNA Sequencing

- Copy of a gene (mRNA) per cell depends on gene expression
- Analysis goal: Differential expression and interpretation
https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg

Today we will cover RNA sequencing

RNA Sequencing

- Copy of a gene (mRNA) per cell depends on gene expression
- Analysis goal: Differential expression and interpretation

RNA seq workflow

Library prep and sequencing

Bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

- Enrichment for mRNA
- In humans, ~95\%-98\% of all RNA molecules are rRNAs

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

- Enrichment for mRNA
- In humans, ~95\%-98\% of all RNA molecules are rRNAs
- Random priming and reverse transcription
- Double stranded cDNA synthesis
- Sequencing adapter ligation

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015

Goal of RNAseq

"How can we detect genes for which the counts of reads change between conditions more systematically than as expected by chance"

Oshlack et al. 2010. From RNA-seq reads to differential expression results. Genome Biology 2010, 11:220
http://genomebiology.com/2010/11/12/220

Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4 ${ }^{+}$T Cell Line
Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

HIV Infected
CD4+ T Cells

12 hour
24 hour

HIV lifecycle

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

HIV lifecycle

HIV infection in a human host

https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of host cell and viral replication levels?

Study findings

- 20% of reads mapped to HIV at 12 hr , 40\% at 24 hr
- Downregulation of T cell activation genes at 12 hr
- 'Large-scale disruptions to host transcription' at 24 hr

Workflow

Workflow

Raw reads in Fastq format

```
@SRR098401.109756285
GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...
+
CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...
```

1. Sequence identifier
2. Sequence
3. + (optionally lists the sequence identifier again)
4. Quality string

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

```
Quality encoding: !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI
```

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

```
Quality encoding: !"#$%&'()*+,-./0123456789:;<<>?@ABCDEFGHI
```

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Back to our read:

```
@SRR098401.109756285
GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...
+
CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...
    C -> Q = 34 -> Probability < 1/1000 of an error
```


Base Quality Scores

```
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
```



```
    . . . . . . . . . . . . . . . . . . . . . . .JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ. . . . . . . . . . . . . . . . . . . . . 
```



```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
    -5....0........9................................. 40
    0........9....................................}4
    3.....9...................................... . . . . . 
0.2.......................................41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)
    with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
    (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


Raw read quality control

- Quality distribution over the length of the read
- GC content
- Per base sequence content
- Adapters in Sequence

FastQC: Sequence Quality Histogram

FastQC: Per sequence GC content

© Per sequence GC content

GOOD: follows normal distribution (sum of deviations is $<15 \%$ of reads)
${ }^{*}$ Per sequence GC content

BAD: can indicate contamination with adapter dimers, or another species

FastQC: Per Base Sequence Content

EXPECTED for RNAseq
Position (bp)
Created with Multioc

- Proportion of each position for which each DNA base has been called
- RNAseq data tends to show a positional sequence bias in the first ~ 12 bases
- The "random" priming step during library construction is not truly random and certain hexamers are more prevalent than others
- Studies have shown that this does NOT cause mis-called bases or drastic bias in sequenced fragments Read quality drops at the beginning and end

FastQC: Per Base Sequence Content

ERR458497

EXPECTED

BAD:
Shows a strong positional bias throughout the reads, which in this case is due to the library having a certain sequence that is overrepresented

FastQC: Adapter content

The cause: The "insert" sequence is shorter than the read, and the read contains part of the adapter sequence

FastQC will scan each read for the presence of known adapter sequences

The plot shows that the adapter content rises over the course of the read

Solution - Adapter trimming!

Primer 1 Read 1

Adapter 1	Insert to sequence	Adapter 2

Read 2
Primer 2

sequencing.qcfail.com

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

Adapter trimming

Trim Galore! is a tool that:

- Scans and removes known Illumina or custom adapters
- Performs read trimming for low quality regions at the end of reads
- Removes reads that become too short in the trimming process

Workflow

Read Alignment

- RNAseq data originates from spliced mRNA (no introns)
- When aligning to the genome, our aligner must find a spliced alignment for reads

Reference-based vs Reference-free RNAseq

RNAseq can be roughly divided into two "types":

- Reference genome-based - an assembled genome exists for a species for which an RNAseq experiment is performed. It allows reads to be aligned against the reference genome and significantly improves our ability to reconstruct transcripts. This category would obviously include humans and most model organisms
- Reference genome-free - no genome assembly for the species of interest is available. In this case one would need to assemble the reads into transcripts using de novo approaches. This type of RNAseq is as much of an art as well as science because assembly is heavily parameter-dependent and difficult to do well.

In this lesson we will focus on the Reference genome-based type of RNA seq.

STAR Aligner (Spliced Transcripts Alignment to a Reference)

Highly accurate, memory intensive aligner Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a read. MMP can be extended by

- mismatches

- Indels
- soft-clipping
(b)

(c)

STAR Aligner (Spliced Transcripts Alignment to a Reference)

Highly accurate, memory intensive aligner Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a read. MMP can be extended by

- mismatches

- Indels
- soft-clipping

2. Clustering MMP, stitching and scoring to determine final read location
(c)

Map

A-tail, or adapter, or poor quality tail

STAR Aligner (Spliced Transcripts Alignment to a Reference)

Highly accurate, memory intensive aligner Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a read. MMP can be extended by

- mismatches
- Indels
- soft-clipping

2. Clustering MMP, stitching and scoring to determine final read location

(b)

(c)

Map

A-tail, or adapter, or poor quality tail
Output is a Sequence Alignment Map (SAM) file

Sequence Alignment Map (SAM)


```
@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * * 0 0 ATAGCTTCAGC 
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

Header
section

Alignment
section

CIGAR: summary of alignment, e.g. match, gap, insertion, deletion Mapping Quality
Position
Ref Sequence name
Flag: indicates alignment information e.g. paired, aligned, etc https://broadinstitute.github.io/picard/explain-flags.html
Read ID
www.samformat.info

Sequence Alignment Map (SAM)

CSQ SN:ref LN: 75
r001 99 ref 730 8M2I4M1D3M $=37 \quad 39$ TTAGATAAAGGATACTG *
r002 0 ref 930 3S6M1P1I4M * 0 AAAAGATAAGGATA *
r003 0 ref $9305 S 6 M \quad * 0$ GCCTAAGCTAA * SA:Z:ref,29,-,6H5M, 17, 0 ;
r004 0 ref 1630 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 2917 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref $37309 \mathrm{M}=7$-39 CAGCGGCAT \quad NM:i:1
Paired end info

Header
section

Alignment section
www.samformat.info

Genome Annotation Standards

- STAR can use an annotation file gives the location and structure of genes in order to improve alignment in known splice junctions
- Annotation is dynamic and there are at least three major sources of annotation
- The intersection among RefGene, UCSC, and Ensembl annotations shows high overlap. RefGene has the fewest unique genes, while more than 50% of genes in Ensembl are unique

- Be consistent with your choice of annotation source!

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence STAR uses a Gene Transfer Format (GTF) file for gene annotation

Frame
Strand
Chrom Source Feature type Start Stop (Score) Attribute
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { chr5 } & \text { hg38_refGene } & \text { exon } & 138465492 & 138466068 & . & + & .\end{array}\right]$ gene_id "EGR1";

A note on standards

HOW STANDARDS PROLIFERATE:

(SEEP A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

| SOON: |
| :---: | :---: |
| SITUATION: |
| THERE ARE |
| I4 COMPETING RIDICULOUS! |
| STANDARDS. |
| WE NEED TO DEVELOP |
| ONE UNIVERSAL STANDARD |
| THAT COVERS EVERYONE'S |
| USE CASES. YEAH! |
| SITUATION: |
| THERE ARE |
| IS COMPETING |
| STANDARDS. |

Visualizing reads with JBrowse

Workflow

Counting reads for each gene

Gene 1
Gene 2

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded
- Output will be a matrix of genes and samples

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded
- Output will be a matrix of genes and samples

Result is a gene count matrix:

Gene	Sample 1	Sample 2	Sample 3	Sample 4
A	1000	1000	100	10
B	10	1	5	6
C	10	1	10	20

Tracking read numbers

Revisit quality control after each processing step!

Number of Reads	Source	Result
Raw reads	FastQC run 1	8 M
After Trimming	FastQC run 2	7.1 M
Aligned to genome	STAR log	6 M
Associated with genes	FeatureCounts log	5.4 M

Workflow

Testing for Differential Expression

The goal of differential expression analysis (DE) is to find gene (DGE) differences
between conditions, developmental stages, treatments etc.

In particular DE has two goals:

- Estimate the magnitude of expression differences;
- Estimate the significance of expression differences.

Differential Expression with DESeq2

All steps are done with one click in Galaxy!

Normalization

Sample A Reads

The number of sequenced reads mapped to a gene depends on

- Gene Length

Normalization

The number of sequenced reads mapped to a gene depends on

Sample A Reads

Sample B Reads

$\square-$ Gener $-\square$

Normalization

The number of sequenced reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample

Normalization

The number of sequenced reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample
- It's own expression level

Normalization eliminates the factors that are not of interest!

Normalization methods

Normalization method	Description	Accounted factors	For Differential Expression?
CPM (counts per million)	counts scaled by total number of reads in a sample	sequencing depth	NO
TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped	sequencing depth and gene length	NO
RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	NO
DESeq2's median of ratios [1]	counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	YES

Normalization: DESeq2 Median of Ratios

Accounts for both sequencing depth and composition
Step 1: creates a pseudo-reference sample (row-wise geometric mean)
For each gene, a pseudo-reference sample is created that is equal to the geometric mean across all samples.

gene	sampleA	sampleB	pseudo-reference sample
1	1000	1000	$\sqrt{(1000 * 1000)=1000}$
2	10	1	$\sqrt{ }(10 * 1)=\mathbf{3 . 1 6}$
\ldots	\ldots	\ldots	\ldots

Normalization: DESeq2 Median of Ratios

Step 2: calculates ratio of each sample to the reference
Calculate the ratio of each sample to the pseudo-reference. Since most genes aren't differentially expressed, ratios should be similar.

gene	sampleA	sampleB	pseudo-reference sample	ratio of sampleA/ref	ratio of sampleB/ref
1	1000	1000	1000	$1000 / 1000=1.00$	$1000 / 1000=\mathbf{1 . 0 0}$
2	10	1	3.16	$10 / 3.16=\mathbf{3 . 1 6}$	$1 / 3.16=\mathbf{0 . 3 2}$
\ldots	\ldots	\ldots	\ldots		

Normalization: DESeq2 Median of Ratios

Step 2: calculates ratio of each sample to the reference
Calculate the ratio of each sample to the pseudo-reference.

| gene | sampleA | sampleB | pseudo-reference
 sample | ratio of
 sampleA/ref | ratio of
 sampleB/ref |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1000 | 1000 | 1000 | $1000 / 1000=1.00$ | $1000 / 100 \mathrm{p}=\mathbf{1 . 0 0}$ |
| 2 | 10 | 1 | 3.16 | $10 / 3.16=3.16$ | $1 / 3.16=\mathbf{0 . 3 2}$ |
| \ldots | \ldots | \ldots | \ldots | \ldots | \ldots |

Step 3: calculate the normalization factor for each sample (size factor)
The median value of all ratios for a given sample is taken as the normalization factor (size factor) for that sample:

Normalization: DESeq2 Median of Ratios

Visualization of normalization factor for a sample:

- Median should be ~1 for each sample, otherwise data should be examined for the presence of large outliers
- This method is robust to imbalance in up-/down- regulation and large numbers of differentially expressed genes

Assumptions of this method:
Not all genes are differentially expressed
sample 1 / pseudo-reference sample

Normalization: DESeq2 Median of Ratios

Step 4: calculate the normalized count values using the normalization factor
This is performed by dividing each raw count value in a given sample by that sample's size factor to generate normalized count values.

SampleA normalization factor $=2.08$
SampleB normalization factor $=0.66$

Raw Counts

gene	sampleA	sampleB
1	1000	1000
2	10	1

Normalized Counts

gene	sampleA	sampleB
	$1000 / 2.08=$	$1000 / 0.66=$
1	$\mathbf{4 8 0 . 7 7}$	$\mathbf{1 5 1 5 . 1 6}$
2	$10 / 2.08=\mathbf{4 . 8 1}$	$1 / 0.66=\mathbf{1 . 5 2}$

Unsupervised Clustering

Principle Component Analysis

Here is an example with three genes measured in many samples:

Gene	Sample 1	Sample 2		
Gene 1	1000	1000	100	10
Gene 2	10	1	5	6
Gene 3	10	1	10	20

- Each gene that we measure is a "dimension" and we can visualize up to 3
- PCA can help us visualize relationships in out data in a lower number of dimensions
- PCA is an important QC step! Do your samples cluster as expected?

Differential Expression with DESeq2

Multi-factor design

CD4+ T cell infected with either Mock or HIV

Sample	Condition	Time
1	Mock	12
2	Mock	12
3	Mock	12
4	Mock	24
5	Mock	24
6	Mock	24
7	HIV	12
8	HIV	12
9	HIV	12
10	HIV	24
11	HIV	24
12	HIV	24

Multi-factor design

Mock

HIV
CD4+ T cell infected with either Mock or HIV

Sample	Condition	Time
1	Mock	12
2	Mock	12
3	Mock	12
4	Mock	24
5	Mock	24
6	Mock	24
7	HIV	12
8	HIV	12
9	HIV	12
10	HIV	24
11	HIV	24
12	HIV	24

We choose a primary "factor" for comparison, but can optionally include other factors to be controlled for.

DESeq2 Test for Differential Expression

- Fit a probability distribution to each gene we measured
- Perform a statistical test (Wald test) to determine whether there is a difference between conditions

Expression Level of a Gene

Deviation from global mean

No Significant Difference

DESeq2 Outputs

- Tables:
- Results
- Normalized Counts
- Plots:
- PCA
- P-value Histogram
- MA

Results table

GenelD	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
EGR1	1273.65	-2.22	0.12	-18.65	$1.25 \mathrm{E}-77$	$1.44 \mathrm{E}-73$
MYC	5226.12	1.41	0.11	12.53	$4.95 \mathrm{E}-36$	$2.87 \mathrm{E}-32$
OPRK1	78.35	-1.83	0.17	-10.57	$4.11 \mathrm{E}-26$	$1.59 \mathrm{E}-22$
CCNI2	7427.12	0.93	0.10	9.43	$4.27 \mathrm{E}-21$	$1.24 \mathrm{E}-17$
STRA6	785.78	0.97	0.11	8.61	$7.29 \mathrm{E}-18$	$1.69 \mathrm{E}-14$

- Mean of normalized counts - averaged over all samples from two conditions
- Log of the fold change between two conditions
- Standard Error of Log FC estimate - will reflect the "noisiness" of the gene
- P -value - the probability that the log2FoldChange is not zero
- Adjusted P value - accounting for multiple testing correction

P-value histogram

- Plot of raw p-values

- P-value: Probability of getting a logFC as extreme as observed if the true $\operatorname{logFC}=0$ for that gene (null hypothesis)

How to interpret:

- Random P-values are expected to be uniform, if you have true positives you should see a peak close to zero
http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

MA plot

Shows the relationship between

- M : The difference in expression $\log ($ HIV $)-\log ($ Mock $)=\log ($ HIV/Mock $)$
- A: Average expression strength Average(Mock, HIV)
- Genes with adjusted p-value <0.1 are in red
- Can be used as an overview or to diagnose problems

MA-plot for condition: mock vs hiv

Conclusions

References

https://www.bioconductor.org/packages/3.3/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf https://hbctraining.github.io/DGE_workshop
https://galaxyproject.org/tutorials/rb rnaseq/

Extra Slides

RNA extraction

Good resource: Griffiths et al Plos Comp Bio 2015

Next Generation Sequencing (NGS)

https://sites.google.com/site/himbcorelab/illumina sequencing

Next Generation Sequencing (NGS)

https://sites.google.com/site/himbcorelab/illumina sequencing

Next Generation Sequencing (NGS)

First chemistry cycle: to initiate the first sequending gyde, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.
8. IMAGE FIRST BASE

After laser excitation, capture the image of mitted fluorescence from each duster on the flow cell. Record the identity of the first base for each duster.
9. DETERMINE SECOND BASE

Second chemistry cydes to initiate the next sequencing cycle, add all four labelec: reversible terminators and enzyme to the flow cell.

Final Heatmap - not part of DESeq2 output

Common RNAseq analysis goals

- Novel transcript discovery
- Transcriptome assembly
- Single cell analysis
- Quantify alternative splicing
- Differential Expression

Replace with actual heatmap

Fig 1. An overview of the central dogma of molecular biology.

Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi. 1004393 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Fig 2. RNA-seq data generation.
Samples of interest
Isolate RNAs
Generate cDNA, fragment,

Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi. 1004393 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1004393

Fig 3. RNA-seq library fragmentation and size selection strategies that influence interpretation and analysis.

Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi. 1004393 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1004393

Fig 4. RNA-seq library enrichment strategies that influence interpretation and analysis.

Expected Alignments
Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi. 1004393 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1004393

Fig 6. Comparison of stranded and unstranded RNA-seq library methods and their influence on interpretation and analysis.

Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLOS Computational Biology 11(8): e1004393. https://doi.org/10.1371/journal.pcbi. 1004393 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1004393

Test for Differential Expression

DESeq2 will seek to fit a probability distribution to each gene we measured and perform a statistical test to determine whether there is a difference between conditions

Expression Level of a Gene

Deviation from global mean

No Significant Difference

