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DNA and RNA in a cell

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg



Two common analysis goals

DNA Sequencing
RNA Sequencing
* Fixed copy of a gene per cell

* Analysis goal:
Variant calling and interpretation * Copy of a gene (mRNA) per cell
depends on gene expression

* Analysis goal: Differential
expression and interpretation

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg



Today we will cover RNA sequencing

RNA Sequencing
* Fi er cell

interpretation * Copy of a gene (mRNA) per cell
depends on gene expression

Variant

* Analysis goal: Differential
expression and interpretation

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg
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https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

RNA seq library prep and sequencing
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https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

RNA seq library prep and sequencing

AAAA

Extracted RNA T AAAA
* Enrichment for mRNA — RNA o pann i Poly(A)
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https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

RNA seq library prep and sequencing
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* Enrichment for mRNA — RNA o pama A Poly(A)
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* In humans, ~95%—98% of all RNA
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Good resource: Griffiths et al Plos Comp Bio 2015



https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

RNA seq bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015
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https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

Goal of RNAseg

“How can we detect genes for which the counts of reads change between
conditions more systematically than as expected by chance”

Oshlack et al. 2010. From RNA-seq reads to differential
expression results. Genome Biology 2010, 11:220
http://genomebiology.com/2010/11/12/220



Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell
Activation and RNA Processing and Regulation of Noncoding RNA Expression in a
CD4* T Cell Line

Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

Mock Infected HIV Infected
CD4+ T Cells CD4+ T Cells

... ... 12 hour
L X X Q00 i

https://www.ncbi.nlm.nih.gov/pubmed/21933919



https://www.ncbi.nlm.nih.gov/pubmed/21933919

HIV lifecycle

Life Cycle
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https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle



https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

HIV lifecycle
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https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of
host cell and viral replication levels?
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https://aidsinfo.nih.gov/understanding-hiv-aids/glossary/1596/life-cycle

Study findings

* 20% of reads mapped to HIV at 12 hr,
40% at 24 hr

* Downregulation of T cell activation
genes at 12 hr

* ‘Large-scale disruptions to host
transcription’ at 24 hr
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Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression
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Raw reads in Fastg format

Sequence identifier

Sequence

+ (optionally lists the sequence identifier again)
Quality string

LN e




Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

Quality encoding: !"#$%&'()*+,-./0123456789: ;<=>?@ABCDEFGHI
| | | | |
Quality score: 0........ 10........ 20........ & )50000000 40

A quality score is a prediction of the probability of an error in base calling:

10 (Q10) 1in 10 90%
20 (Q20) 1in 100 99%
30 (Q30) 1in 1000 99.9%

https://www.illumina.com/science/education/sequencing-quality-scores.html



Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

Quality encoding: !"#$%&'()*+,-./0123456789: ;<=>?@ABCDEFGHI
| | | | |
Quality score: 0........ 10........ 20........ & )50000000 40

A quality score is a prediction of the probability of an error in base calling:

10 (Q10) 1in 10 90%
20 (Q20) 1in 100 99%
30 (Q30) 1in 1000 99.9%

Back to our read:

C—>Q= 34-> PrObablllty < 1/1000 of an error https://www.illumina.com/science/education/sequencing-quality-scores.html



Base Quality Scores

G H X O

SS5SS555SS5SS55SS55SS5S5S5SSS55SS55S5S55S5S5 S e ececceescscssssscssscnsscnsssncsscnscsscsssscsscscsssscnsnse
D $.9.9 9 9. 9.9.9 9.9.9.9.9.9.0.0.0.0.0.9.0.0.0.0.0.0.0.9.0.0.0.9.9.0.0.9.9.0.0.9.9.0. 0.0, GNP

3 59 64 73 104 126
Dccecocvsescccscnacncnancne 260¢031cccvcee 40
=5ccseleccaccas 9.cccscccsasancsacssasssassnas 40
Ococecoss 9 e ccicacccncsancsancseossaossee 40
3eaana 0 e sasiacanaaalansasasasasesasasaas 41
0:e2.cccocscncncsascsanane 260003 cccnccas 41
- Sanger Phred+33, raw reads typically (0, 40)
- Solexa Solexa+64, raw reads typically (-5, 40)
- Illumina 1.3+ Phred+64, raw reads typically (0, 40)
- Illumina 1.5+ Phred+64, raw reads typically (3, 41)
with O=unused, l=unused, 2=Read Segment Quality Control Indicator (bold)
(Note: See discussion above).
- Illumina 1.8+ Phred+33, raw reads typically (0, 41)

https://en.wikipedia.org/wiki/FASTQ_ format



https://en.wikipedia.org/wiki/FASTQ_format

Raw read quality control

Quality distribution over the length of the read

GC content

Per base sequence content

Adapters in Sequence



FastQC: Sequence Quality Histogram
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FastQC: Per sequence GC content

@Per sequence GC content
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BAD: can indicate contamination with
adapter dimers, or another species



FastQC: Per Base Sequence Content
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* Proportion of each position for which each DNA base has been called
* RNAseq data tends to show a positional sequence bias in the first ~¥12 bases
* The "random" priming step during library construction is not truly random and certain hexamers are
more prevalent than others
* Studies have shown that this does NOT cause mis-called bases or drastic bias in sequenced fragments
Read quality drops at the beginning and end
sequencing.gcfail.com



https://sequencing.qcfail.com/articles/positional-sequence-bias-in-random-primed-libraries/

FastQC: Per Base Sequence Content

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

ERR458497

Position (bp)
eeeeeeeeeeeeeeeeee

EXPECTED BAD:
Shows a strong positional bias throughout the
reads, which in this case is due to the library
having a certain sequence that is
overrepresented



FastQC: Adapter content

i " : Primer 1 Read 1
The cause: The ”|nsert sequence is shorter than the m ................... e- ? .............................
read, and the read contains part of the adapter

P P Adapter 1 | Insert to sequence | Adapter 2
sequence
.......................... T
a llumina Universal Adapter
FastQC will scan each read for the presence of known " liuminaSemall BNA S SAaapEor
llumina Small RNA S' Adapter

adapter sequences -

Nextera Transposase Sequence
SOLID Small RNA Adapter

80

The plot shows that the adapter content rises over the
course of the read w
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Position in read (bp)
sequencing.qcfail.com



https://sequencing.qcfail.com/

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

FastQC: Adapter Content
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Position in read (bp) Created with MultiQC



Adapter trimming

Trim Galore! is a tool that:

* Scans and removes known lllumina or custom adapters

* Performs read trimming for low quality regions at the end of reads
* Removes reads that become too short in the trimming process



Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Read Alignment

* RNAseq data originates from spliced mRNA (no
full-length mRNA

introns) 5' (N Anaana 3
* When aligning to the genome, our aligner must find a l
spliced alignment for reads cDNA fragments
-l =B
— [
— —

l sequencing

aligned reads

Reference sequence



Reference-based vs Reference-free RNAseq

RNAseq can be roughly divided into two "types":

* Reference genome-based - an assembled genome exists for a species for which an RNAseq experiment is
performed. It allows reads to be aligned against the reference genome and significantly improves our ability
to reconstruct transcripts. This category would obviously include humans and most model organisms

* Reference genome-free - no genome assembly for the species of interest is available. In this case one would
need to assemble the reads into transcripts using de novo approaches. This type of RNAseq is as much of an

art as well as science because assembly is heavily parameter-dependent and difficult to do well.

In this lesson we will focus on the Reference genome-based type of RNA seq.

https://galaxyproject.org/tutorials/rb_rnaseq/



https://galaxyproject.org/tutorials/rb_rnaseq/

STAR Aligner (Spliced Transcripts Alignment to a

Reference)

Highly accurate, memory intensive aligner
Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a
read. MMP can be extended by
* mismatches
* Indels
* soft-clipping

Map again
MMP 2

RNA-seq read

exons in the genome

(b) (c)
Map Map
MMP 1 . Extend . MMP 1 . Trim .

mismatches A-tail, or adapter,

or poor quality tail

Dobin et al Bioinformatics 2013



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/

STAR Aligner (Spliced Transcripts Alignment to a

Reference)

Highly accurate, memory intensive aligner
Two phase mapping process

1. Find Maximum Mappable Prefixes (MMP) in a
read. MMP can be extended by
* mismatches
* Indels
* soft-clipping

2. Clustering MMP, stitching and scoring to
determine final read location

(a) Map Map again
MMP1 § MMP2

RNA-seq read

cajpealee

exons in the genome

(b) (c)
Map Map
MMP 1 Extend . MMP1 — Trim
mismatches A-tail, or adapter,

or poor quality tail

Dobin et al Bioinformatics 2013



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/

STAR Aligner (Spliced Transcripts Alignment to a

Reference)

(a) Map Map again
Highly accurate, memory intensive aligner MMP 1 MMP 2 R

Two phase mapping process

RNA-seq read

cajpealee

1. Find Maximum Mappable Prefixes (MMP) in a
read. MMP can be extended by

* mismatches exons in the genome
* Indels
« soft-clipping (b) (c)
Map Map
2. Clustering MMP, stitching and scoring to DIKIE . Exend anitl > UL
determine final read location Il D
mismatches A-tail, or adapter,

or poor quality tail
Output is a Sequence Alignment Map (SAM) file

Dobin et al Bioinformatics 2013



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/

Sequence Alignment Map (SAM)

Reference seq

exon

exon

reacs e
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * O O AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 O GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 O ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 O TAGGC * SA:Z:ref,9,+,556M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

A A

https:
Read ID

I T N CIGAR: summary of alignment, e.g. match, gap, insertion, deletion

Mapping Quality
Position

Ref Sequence name

Flag: indicates alignment information e.g. paired, aligned, etc

broadinstitute.github.io/picard/explain-flags.html

Header
section

Alignment
section

www.samformat.info


https://broadinstitute.github.io/picard/explain-flags.html

Sequence Alignment Map (SAM)

Reference seq

Reads _
Joamac

QHD VN:1.5 S0:coordinate Header
@SQ SN:ref LN:45 section

r001 99 ref 7 30 8M2I4M1D3M
r002 0 ref 9 30 3S6M1P1I4M
r003 0 ref 9 30 5S6M

r004 0 ref 16 30 6M14NSM
r003 2064 ref 29 17 6HSM

r001 147 ref 37 30 9M

37 39 TTAGATAAAGGATACTG *
0 AAAAGATAAGGATA
0 GCCTAAGCTAA

0

0 SA:Z:ref,29,-,6H5M,17,0; | Alignment
0 0 ATAGCTTCAGC

0

7

section

* ¥ * *

0 TAGGC
-39 CAGCGGCAT

e —

Paired end info

SA:Z:ref,9,+,556M,30,1;

NM:i:1

Optional Fields

—_— % * * ® %

Quality Score

Sequence

www.samformat.info



Genome Annotation Standards

* STAR can use an annotation file gives the location
and structure of genes in order to improve alignment

in known splice junctions
* Annotation is dynamic and there are at least three @
major sources of annotation @
882

* The intersection among RefGene, UCSC, and Ensembl
annotations shows high overlap. RefGene has the
fewest unique genes, while more than 50% of genes
in Ensembl are unique

Ensembl RefGene

UCscC

* Be consistent with your choice of annotation source!

Zhao et al Bioinformatics 2015



https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1308-8

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence
STAR uses a Gene Transfer Format (GTF) file for gene annotation

Frame
Strand
Chrom Source Feature type Start Stop (Score) Attribute
chr5 hg38 refGene exon 138465492 | 138466068 | . [+ | . gene_id "EGR1";
chr5 hg38 refGene CDS 138465762 | 138466068 | . [+ | 0O gene_id "EGR1";
chr5 hg38 refGene start_codon 138465762 | 138465764 | . |+ | . gene_id "EGR1";
chr5 hg38 refGene CDS 138466757 | 138468078 | . |+ | 2 gene_id "EGR1";
chr5 hg38 refGene exon 138466757 | 138469315 o+ ] gene id "EGR1";
chr5 hg38 refGene stop_codon 138468079 | 138468081 o+ ] gene id "EGR1";

https://useast.ensembl.org/info/website/upload/gff.htm]



https://useast.ensembl.org/info/website/upload/gff.html

A note on standards

HOW STANDARDS PROUFERATE:

(<65 A/C (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

W7 RiDICULoLS!

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CPSES.  yepyy

\O J

)

OCON:

SITUATION:
THERE ARE

|5 COMPETING
STANDPRDS.

https://xkcd.com/927/



Visualizing reads with JBrowse

Genome Track View Help

0 20.000.000 40,000,000 60,000,000 80.000,000 100,000,000 120,000,000 140,400,000 160,000.000 180,000
@ @ Q Qy & a chrs| v || chr5:138461563..138460771 (8.21Kb) | Go &
E— 138,485,000 138 467,500 iz
‘ ‘
|4 Refergnce sequence Zoom in to %e sequence ‘ Zoom in to %e sequence Zoom in to +e sequence
hg38_fenes.bed £GR1 EGRI 1 |
.
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—— 't
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HIV_1

HIV_1

HIV_1

hr_rep1_pass_subsample.fastq.gz

hr_repZ_pass_subsample.fastq.gz

hr_rep3_pass_subsample.fastq.gz

12hr_rep1_pass_subsample.fastq.gz

12hr_rep2_pass_subsample.fastq.gz

12hr_rep3_pass_subsample.fastq.gz




Workflow

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression




Counting reads for each gene

Gene 1

Gene 2
Reference seq exon exon exon
Read NN W B =

O S



Counting reads: featurecounts

e The mapped coordinates of each read are
compared with the features in the GTF file

* Reads that overlap with a gene by >=1 bp are
counted as belonging to that feature

* Ambiguous reads will be discarded

* OQutput will be a matrix of genes and samples

gene A

ambiguous



Counting reads: featurecounts

e The mapped coordinates of each read are
compared with the features in the GTF file

* Reads that overlap with a gene by >=1 bp are
counted as belonging to that feature

* Ambiguous reads will be discarded

* OQutput will be a matrix of genes and samples

Result is a gene count matrix:

read
G sl [erng |Snpts s
A 10 A

1000 1000 100
B 10 1 5 6
C 10 1 10 20

read
gene_A
read
gene_A

read
gene A gene_A

read read

gene A - gene A

read
gene_A
gene B

read
gene_A
gene_B

gene A

ambiguous



Tracking read numbers

Revisit quality control after each processing step!

Number of Reads
Raw reads

After Trimming
Aligned to genome

Associated with genes

FastQC run 1 8 M
FastQC run 2 7.1 M
STAR log 6 M
FeatureCounts log 54 M



Workflow

Process Raw Reads (QC, adapter
trimming)
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Testing for Differential Expression

The goal of differential expression analysis
(DE) is to find gene (DGE) differences
between conditions, developmental stages,
treatments etc.

In particular DE has two goals:

* Estimate the magnitude of expression
differences;

* Estimate the significance of expression
differences.

Sample A Reads
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Sample B Reads

SIS

| Gene DE 1

| Gene DE |




Differential Expression with DESeq?2

Read counts associated
with genes

Normalization

All steps are done with one click in
— Quality control Galaxy!

Unsupervised clustering
analyses

Differential Expression

Analysis

https://hbctraining.github.io/DGE_workshop



Normalization

The number of sequenced reads mapped to a
gene depends on

* Gene Length

Sample A Reads
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Normalization

The number of sequenced reads mapped to a

gene depends on

* Gene Length
* Sequencing depth

Sample A Reads

e e T T R e
DaDa Gonana -am om e

Sample B Reads
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Normalization

Sample A Reads Sample B Reads

The number of sequenced reads mapped to a
gene depends on

* Gene Length
* Sequencing depth e EENE P
* The expression level of other genesinthe _ L
G N S T W
sample SR
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Normalization

Sample A Reads Sample B Reads
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—
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Normalization eliminates the factors that are not of interest!



Normalization methods

Normalization method Description Accounted factors For Differential Expression?

counts scaled by total number of

CPM (counts per million) reads in a sample sequencing depth NO
TPM (transcripts per kilobase counts per length of transcript sequencing depth and gene NO
million) (kb) per million reads mapped length

RPKM/FPKM (reads/fragments sequencing depth and gene

per kilobase of exon per million  similar to TPM NO
length
reads/fragments mapped)
counts divided by sample-specific
size factors determined by .
DESeq2’s median of ratios [1] median ratio of gene counts sequenc.|r.1g depth and RNA YES
. : composition
relative to geometric mean per
gene

https://hbctraining.github.io/DGE workshop



https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-10-r106
https://hbctraining.github.io/DGE_workshop

Normalization: DESeq2 Median of Ratios

Accounts for both sequencing depth and composition
Step 1: creates a pseudo-reference sample (row-wise geometric mean)

For each gene, a pseudo-reference sample is created that is equal to the geometric
mean across all samples.

gene sampleA sampleB pseudo-reference sample

1 1000 1000 /(1000 x 1000) = 1000
2 10 1 /(10 % 1) =3.16




Normalization: DESeq2 Median of Ratios

Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference. Since most genes aren't
differentially expressed, ratios should be similar.

ene sampleA sampleB pseudo-reference ratio of ratio of
8 P P sample sampleA/ref sampleB/ref
1 1000 1000 1000 1000/1000 = 1.00 1000/1000 = 1.00

2 10 1 3.16 10/3.16 = 3.16 1/3.16 = 0.32




Normalization: DESeq2 Median of Ratios

Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference.

pseudo-reference ratio of ratio of
R | S e (SRR sample sampleA/ref sampleB/ref
1 1000 1000 1000 1000/1000; = 1.00 1000/100p = 1.00
2 10 1 3.16 10/3.16 4 3.16 1/3.16 $ 0.32
Median = 2.08 Median = 0.66

Step 3: calculate the normalization factor for each sample (size factor)

The median value of all ratios for a given sample is taken as the normalization factor

(size factor) for that sample:



Normalization: DESeg2 Median of Ratios

. . sample 1/ pseudo-reference sample
Visualization of normalization factor for a sample: P /p P

* Median should be ~1 for each sample,
otherwise data should be examined for the
presence of large outliers

* This method is robust to imbalance in up-
/down- regulation and large numbers of
differentially expressed genes

|

2500
|

|

Frequency
1500
|

500
]

Assumptions of this method:
Not all genes are differentially expressed o

| Median value
_I.IIIIII |||IIIII -I--I_-__I e



Normalization: DESeq2 Median of Ratios

Step 4: calculate the normalized count values using the normalization factor

This is performed by dividing each raw count value in a given sample by that
sample's size factor to generate normalized count values.

SampleA normalization factor = 2.08

SampleB normalization factor = 0.66

Raw Counts Normalized Counts
gene sampleA sampleB gene sampleA sampleB
1 1000 1000 1 1000/2.08 = 1000/ 0.66 =
9 10 1 480.77 1515.16

2 10/2.08=4.81 1/0.66 =1.52




Unsupervised Clustering

Read counts associated
with genes

Normalization

— Quality control

Unsupervised clustering

analyses




Principle Component Analysis

* Each gene that we measure is

Here is an example with three genes measured in many samples: a "dimension" and we can
visualize up to 3
Gene | sample 1| sample2|
Gene 1 100 10 * PCA can help us visualize
relationships in out data in a
Gene 2 > 6 lower number of dimensions
Gene 3 10 20

* PCAis animportant QC step!
Do your samples cluster as

. expected?
original data space
PCA component space
_>
[@ e Iar
WAL
AN X
i N T x
e 6] B B
S o = — e
0] i
GRS
PC1

Gene 2 Gene 1



Differential Expression with DESeq?2

Read counts associated
with genes

Normalization

— Quality control

Unsupervised clustering
analyses

Differential Expression

Analysis

https://hbctraining.github.io/DGE_workshop



Multi-factor design

CD4+ T cell infected Mock HIV

with either Mock or . . . . . . 12 hour
HIV
. . . . . . 24 hour

(o Jcondion e |

1 Mock 12
2 Mock 12
3 Mock 12
4 Mock 24
5 Mock 24
6 Mock 24
7 HIV 12
8 HIV 12
9 HIV 12
10 HIV 24
11 HIV 24
12 HIV 24



Multi-factor design

Mock HIV

CD4+ T cell infected
with either Mock or
HIV

000 000 ..

(o Jcondion e |

1 Mock 12

2 Mock 12

3 Mock 12

4 Mock 24 We choose a primary

5 Mock 24 “factor” for comparison,
6 Mock 24 but can optionally include
7 HIV 12 other factors to be

8 HIV 12 controlled for.

9 HIV 12

10 HIV 24

11 HIV 24

12 HIV 24



DESeq?2 Test for Differential Expression

Fit a probability distribution to each
gene we measured

Perform a statistical test (Wald test)
to determine whether there is a
difference between conditions

Condition A
Condition B
Condition mean
Global mean

0
e

@
)

Expression Level of a Gene
>

Y ® 0 Significant
°
() ‘0 © 0.0 Difference
M

AUAS

Deviation from global mean
-«>
e
@

AN

No Significant
Difference



DESeqg2 Outputs

* Tables:
e Results
* Normalized Counts

* Plots:
* PCA
* P-value Histogram
* MA



Results table

EGR1 1273.65 -2.22 0. -18.65 1.25E-77 1.44E-73
MYC 5226.12 1.41 0.11 12.53 4.95E-36 2.87E-32
OPRK1 78.35 -1.83 0.17 -10.57 4.11E-26 1.59E-22
CCNI2 7427.12 0.93 0.10 9.43 4.27E-21 1.24E-17
STRAG 785.78 0.97 0.11 8.61 7.29E-18 1.69E-14

* Mean of normalized counts — averaged over all samples from two conditions
* Log of the fold change between two conditions

» Standard Error of Log FC estimate — will reflect the “noisiness” of the gene

* P-value — the probability that the log2FoldChange is not zero

* Adjusted P value — accounting for multiple testing correction



P-value histogram

1500 -

1000 -

count

Truth

I Null

Alternative

500 -

'
0.25

0.50

P-values

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

Plot of raw p-values

P-value: Probability of getting a logFC as
extreme as observed if the true logFC =0
for that gene (null hypothesis)

How to interpret:

Random P-values are expected to be
uniform, if you have true positives you
should see a peak close to zero



http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

MA plot

Shows the relationship between

MA-plot for condition: mock vs hiv

M: The difference in expression
Log(HIV) — Log(Mock) = Log(HIV/Mock)

A: Average expression strength " R DE Gen

Average(Mock, HIV)

* Genes with adjusted p-value < 0.1 are in
red

log fold change

e (Can be used as an overview or to
diagnose problems

-2

T T T T
1e-01 1e+01 1e+03 1e+05

mean of normalized counts



Conclusions

Process Raw Reads (QC, adapter
trimming)

Read Alignment

Gene Quantification

Differential Expression
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RNA extraction

‘ MRNA enrichment

4 ' Fragmentation ~200 bp

v

Random priming + ~
WV R
reverse transcription i

~

Double P
stranded cDNA /
synthesis
=
[ J—
C ]
Sequencing 1
adapter ligation
—
¥
PCR =
—_
-
—
A

Good resource: Griffiths et al Plos Comp Bio 2015



https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

Next Generation Sequencing (NGS)

1. PREPARE GENOMIC DNA SAMPLE 2. ATTACH DNA TO SURFACE 3. BRIDGE AMPLIFICATION

Adapters
Rendomly fragment genomic DNA Bind single-stranded fragments randomly to Add uniabeled nudeotides and enzyme to
and Egste adapters to both ends of the the inside surface of the flow cell channels. initiate solid-phase bridge amplification.

fragments.
https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

4. FRAGMENTS BECOME DOUBLE 5. DENATURE THE DOUBLE-STRANDED 6. COMPLETE AMPLIFICATION
STRANDED MOLECULES

The enzyme incorporates nudeotides to Denaturation leaves single-stranded Several million dense dusters of double-
build double-stranded bridges on the solid- templates anchored to the substrate. stranded DNA are generated in each channel
phase substrate. of the flow cell.

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

7. DETERMINE FIRST BASE 8. IMAGE FIRST BASE 9. DETERMINE SECOND BASE

First chemistry cyde: toinitiate the first After laser exditation, capture the image of Second chemistry cyde: to initiate the

sequending cyde, add all four label ed reversible emitted fluorescence from each dusteron the next sequending cyde, add all four labeled
terminators, primers and DNA polymerase flow cell. Record the identity of the first base reversible termin s and enzyme to the
enzyme to the flow cell. for each duster. flow cell

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Final Heatmap — not part of DESeq2 output
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Common RNAseq analysis goals

- Novel transcript discovery

- Transcriptome assembly

- Single cell analysis

- Quantify alternative splicing
- Differential Expression

condition
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05
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Fig 1. An overview of the central dogma of molecular biology.
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Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.
PLOS Computational Biology 11(8): €1004393. https://doi.org/10.1371/journal.pcbi.1004393

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393
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Fig 2. RNA-seq data generation.
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Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.
PLOS Computational Biology 11(8): €1004393. https://doi.org/10.1371/journal.pcbi.1004393
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https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1004393

Fig 3. RNA-seq library fragmentation and size selection strategies that influence interpretation and analysis.
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Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.
PLOS Computational Biology 11(8): €1004393. https://doi.org/10.1371/journal.pcbi.1004393
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Fig 4. RNA-seq library enrichment strategies that influence interpretation and analysis.
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Fig 6. Comparison of stranded and unstranded RNA-seq library methods and their influence on
interpretation and analysis.
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Test for Differential Expression

Expression Level of a Gene

DESeq2 will seek to fit a probability >
distribution to each gene we Condition A ® o . .o Significant
measured and perform a statistical Condition B @ ° ‘. ®) .‘. o Difference
test to determine whether there is Condition mean @

a difference between conditions Global mean © ¢ ’

AUAS

Deviation from global mean
-«>
.u Y No Significant
® Difference
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