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While you are waiting, please:
Download day 1 slides from: https://sites.tufts.edu/biotools/

Tutorials -> bioinformatics_rnaseq_workshop_day_2

In a Chrome web browser: https://ondemand.cluster.tufts.edu

Login with your tufts credentials
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Today's Schedule
1. Viewing alignment in IGV

2. R and Rstudio Introduction

3. Differential Expression Analysis with DESeq2

We'll follow closely some courses from Harvard Chan School Bioinformatics Core
(developers of BCBIO)

https://github.com/hbc/NGS_Data_Analysis_Course/ 
https://hbctraining.github.io/DGE_workshop/

See their pages for many useful tutorials
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Summary
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Why switch to R programming language?
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1. Chrome web browser
https://ondemand.cluster.tufts.edu

2. Choose Rstudio from the
Interactive Apps Menu

3. Choose

Number of hours: 4
Number of cores: 1
Amount of Memory: 32 Gb
R version: 3.5.0

4. Press "Connect to Rstudio"

Rstudio on the Tufts HPC cluster via "On Demand"
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Rstudio Interface

Go to the File menu -> New File -> R Script, you should see: 

File menu -> Save your file as intro.R
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Testing some commands

In the script editor type the following and click "Run". To run a block of code,
highlight it and click "Run"

To see your current working directory

getwd()

"/cluster/kappa/90-days-archive/bio/tools/training/<your user name>/bioinformatics-rnaseq"

To change to our workshop directory

setwd('~/bioinformatics-rnaseq/')

Set some variables

x = 3
y = 5
z = x + y

Check that the variables appear in the Environment panel
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R libraries
Check which paths on the cluster R will use to find library locations:

.libPaths()

Will output the library paths:

[1] "/opt/shared/R/3.5.0/lib64/R/library"

Add a custom library path, which contains libraries that we'll use:

.libPaths('/cluster/tufts/bio/tools/R_libs/3.5')

Load a library:

library(tidyverse)
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Vectors
A vector is the most basic data structure in R

numbers     <- c(1,2,3,4)
letters     <- c("A","B","C","D")

Vectors must contain all the same type of data If you give a combination, R will
coerce it into one type

combination <- c("A","B",1,2)

combination

[1] "A" "B" "1" "2"

10 / 62



View data frame

meta

          condition
SNF2_rep1      SNF2
SNF2_rep2      SNF2
SNF2_rep3      SNF2
SNF2_rep4      SNF2
SNF2_rep5      SNF2
WT_rep1          WT
WT_rep2          WT
WT_rep3          WT
WT_rep4          WT
WT_rep5          WT

View in a new tab

View(meta)

Data Frames
Data frames are the most common data structure for tables

Read in the metadata for our experiment:

meta <- read.table("data/sample_info.txt", header=TRUE)
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View the new table:

meta

          condition number
SNF2_rep1      SNF2      1
SNF2_rep2      SNF2      2
SNF2_rep3      SNF2      3
SNF2_rep4      SNF2      4
SNF2_rep5      SNF2      5
WT_rep1          WT      6
WT_rep2          WT      7
WT_rep3          WT      8
WT_rep4          WT      9

Manipulating Data Frames

The dollar sign $ can be used to select columns in the data frame:

meta$condition

 [1] SNF2 SNF2 SNF2 SNF2 SNF2 WT   WT   WT   WT   WT  
Levels: SNF2 WT

To add a column to a data frame

1. create a vector with 10 values

number <- c(1,2,3,4,5,9,8,7,6,10)

2. use $ on the left side:

meta$number <- number
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Sorting and �ltering data frames

Another way to select from a data frame is using the sytax

dataframe[rows, columns]

For example, to select the first row and first two columns:

meta[1,1:2]

          condition number
SNF2_rep1      SNF2      1

To select the whole first column just least the row number blank (this is the same as
meta$condition):

meta[ ,1]

 [1] SNF2 SNF2 SNF2 SNF2 SNF2 WT   WT   WT   WT   WT  
Levels: SNF2 WT
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Sorting and �ltering data frames

We can check for rows of our data frame that have a condition satisfied:

meta$number > 5

 [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE

Then, we can use this to filter our data frame for these rows using which:

meta[which(meta$number > 5), ]

We can filter for multiple conditions by using the & operator:

meta[which(meta$number > 5 & condition = "WT"), ]

        condition number
WT_rep1        WT      9
WT_rep2        WT      8
WT_rep3        WT      7
WT_rep4        WT      6
WT_rep5        WT     10
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Data frame recap:

Data frames have row names and columns

          condition number
SNF2_rep1      SNF2      1
SNF2_rep2      SNF2      2
SNF2_rep3      SNF2      3
SNF2_rep4      SNF2      4
SNF2_rep5      SNF2      5
WT_rep1          WT      9
WT_rep2          WT      8
WT_rep3          WT      7
WT_rep4          WT      6
WT_rep5          WT     10

Filtering can done by selecting a row and column dataframe[rows, columns], where rows
and columns can be specified as either numbers or binary strings.
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Exercise ( 5 minutes) Load the metadata for our experiment that we saw in day 1:

meta_2 <- read.table('data/ERP004763_info.txt', header=T)

Look at the column names and values using View().

Then, repeat the exercise we did yesterday where you filter the data frame for only
rows corresponding to WT replicate 1.
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ggplot = "Grammar of Graphics"

ggplot(): create data object
aes (): "how" the data will look
geom_point/bar/line: "what" the
plot will be

Plotting example with ggplot2

Create a data frame with count values that span 6 orders of magnitude

library(ggplot2)
x        <-c(1,2,3,4,5,6)
counts   <-c(1,10,100,1000,10000, 100000)
genotype <-c('WT','WT','WT','SNF2','SNF2','SNF2')
df       <-data.frame(x,counts,genotype)

To generate a basic dot plot:

ggplot(df) + geom_point(aes(x=x,y=counts))
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Plotting example with ggplot2
To see the relationships more clearly, we'll set the y log scale:

ggplot(df) + geom_point(aes(x=x,y=counts)) + scale_y_log10()

To color by the genotype value:

ggplot(df) + geom_point(aes(x=x, y=counts, color=genotype)) + scale_y_log10()
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Exercise ( 5 minutes)

Construct another data frame which has an additional column called "phenotype"
which can be either "sick" or "healthy". Make the same plot but add another
argument shape=phenotype to the aesthetic (aes).
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Di�erential Expression with DESeq2

A common goal for RNAseq analysis is to identify genes that are differentially
expressed between conditions

https://hbctraining.github.io/DGE_workshop
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DESeq2: Work�ow overview

https://hbctraining.github.io/DGE_workshop
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Getting set up: Loading libraries
File->"Open File" the R file 'bioinformatics_rnaseq/scripts/deseq2.R'

From now on commands are already in the script deseq2.R 
You only need to Select and run:

# Put HPC biotools R libraries on your R path
.libPaths(c('', '/cluster/tufts/bio/tools/R_libs/3.5/'))

# load required libraries
library(DESeq2)
library(vsn) 
library(ggplot2)
library(dplyr)
library(tidyverse)
library(ggrepel)
library(DEGreport)
library(pheatmap)
library(org.Sc.sgd.db)
library(clusterProfiler)
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Reading in data
Load preprocessed data set of 5 WT replicates and 5 SNF2 knockouts

## Read in preprocessed count and meta data
course_data_path="~/bioinformatics-rnaseq/data/"
setwd(course_data_path)
data <- read.table("sacCerfeatureCounts_gene_results.formatted.txt",header=TRUE)
meta <- read.table("sample_info.txt", header=TRUE)

## View table in new window
View(data)
View(meta)

View the first few lines of "data" and "meta" using head() or open the files in
another tab using View()
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Create DESeq2 Dataset object
Check to make sure that all rows labels in meta are columns in data!

all(colnames(data) == rownames(meta))

Create the dataset and run the analysis

dds  <- DESeqDataSetFromMatrix(countData = data, colData = meta, design = ~ condition)
dds  <- DESeq(dds)

Behind the scenes these steps were run:

estimating size factors
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
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DESeq2: Design formula
dds  <- DESeqDataSetFromMatrix(countData = data, colData = meta, design = ~ condition)

The design formula design = ~condition

Tells DESeq2 which factors in the metadata to test

The design can include multiple factors that are columns in the metadata

The factor that you are testing for comes last, and factors that you want to
account for come first

E.g. To test for differences in condition while accounting for sex and age:

design = ~ sex + age + condition

It's even possible to include time series data and interactions
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Normalization

https://hbctraining.github.io/DGE_workshop
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The number of sequenced reads
mapped to a gene depends on

Gene Length

Normalization

https://hbctraining.github.io/DGE_workshop
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The number of sequenced reads
mapped to a gene depends on:

Gene Length

Sequencing depth

Normalization

https://hbctraining.github.io/DGE_workshop
28 / 62



The number of sequenced reads
mapped to a gene depends on:

Gene Length

Sequencing depth

The expression level of other genes
in the sample

It's own expression level

Normalization:

Normalization eliminates the factors that are not of interest!

https://hbctraining.github.io/DGE_workshop
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Normalization:
The naive approach: divide by total library size (CPM, TPM) for each sample is NOT
reccomended for comparison between samples

Why not? Reads are a finiate resource and Composition matters!
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Normalization:
The naive approach: divide by total library size (CPM, TPM) for each sample is NOT
reccomended for comparison between samples

Why not? Reads are a finiate resource and Composition matters!

 
If you only got 10 reads per condition...

condition A condition B

gene 1 5 reads 1 reads

gene 2 5 reads 9 reads
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Normalization with DESeq2: Median of ratios method
Accounts for both sequencing depth and composition

Step 1: creates a pseudo-reference sample (row-wise geometric mean)

For each gene, a pseudo-reference sample is created that is equal to the geometric
mean across all samples.

gene sampleA sampleB pseudo-reference sample

1 1000 1000  = 1000

2 10 1  = 3.16

... ... ... ...

√(1000 ∗ 1000)

√(10 ∗ 1)

https://hbctraining.github.io/DGE_workshop
32 / 62



Normalization with DESeq2: Median of ratios method
Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference. Since most genes aren't
differentially expressed, ratios should be similar.

gene sampleA sampleB
pseudo-reference

sample
ratio of

sampleA/ref
ratio of

sampleB/ref

1 1000 1000 1000 1000/1000 = 1.00 1000/1000 = 1.00

2 10 1 3.16 10/3.16 = 3.16 1/3.16 = 0.32

... ... ... ...
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Normalization with DESeq2: Median of ratios method
Step 2: calculates ratio of each sample to the reference

Calculate the ratio of each sample to the pseudo-reference.

gene sampleA sampleB
pseudo-reference

sample
ratio of

sampleA/ref
ratio of

sampleB/ref

1 1000 1000 1000 1000/1000 = 1.00 1000/1000 = 1.00

2 10 1 3.16 10/3.16 = 3.16 1/3.16 = 0.32

... ... ... ...

Step 3: calculate the normalization factor for each sample (size factor)

The median value of all ratios for a given sample is taken as the normalization factor
(size factor) for that sample:

normalization_factor_sampleA <- median(c(1.00, 3.16)) = 2.08 
normalization_factor_sampleB <- median(c(1.00, 0.32)) = 0.66
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Median should be ~1 for each
sample

This method is robust to
imbalance in up-/down-
regulation

Normalization with DESeq2: Median of ratios method
Visualization of normalization factor for a sample:

https://hbctraining.github.io/DGE_workshop
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Raw Counts

gene sampleA sampleB

1 1000 1000

2 10 1

Normalized Counts

gene sampleA sampleB

1
1000/2.08 =

480.77
1000 / 0.66 =

1515.16

2 10/2.08 = 4.81 1 / 0.66 = 1.52

Median of ratios method
Step 4: calculate the normalized count values using the normalization factor

This is performed by dividing each raw count value in a given sample by that
sample's size factor to generate normalized count values.

SampleA normalization factor = 2.08

SampleB normalization factor = 0.66
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Exercise (1 minutes)

View the size factors that were calculated by DESeq2 using your R script:

sizeFactors(dds)

Are they roughly the expected value? Based on these, which sample has the fewest
reads and which the largest amount?
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Unsupervised Clustering

https://hbctraining.github.io/DGE_workshop
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Unsupervised Clustering
Quality Control step to asses overall similarity between samples:

Which samples are similar to each other, which are different?

Does this fit to the expectation from the experiment’s design?

What are the major sources of variation in the dataset?

https://hbctraining.github.io/DGE_workshop
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Principle Components Analysis
Here is an example with three genes measured in many samples:

gene sampleA sampleB sampleC sampleD ..

1 1000 1000 100 10 ..

2 10 1 5 6 ..

3 10 1 10 20 ..

Each gene that we measure is a "dimension" and we can visualize up to 3 PCA can
help us visualize relationships in out data in a lower number of dimensions

http://www.nlpca.org/fig_pca_principal_component_analysis.png
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Make a PCA plot
This uses the built in function plotPCA from DESeq2 (built on top of ggplot)
The regularized log transform (rlog) improves clustering by log transforming the
data

rld <- rlog(dds, blind=TRUE)
plotPCA(rld, intgroup="condition") + geom_text(aes(label=name))
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Exercise (5 minutes)

Does something look wrong with the PCA plot?

Suppose we go back over the data and verify that somewhere in the processing
steps, the data for WT_rep1 and SNF_rep5 columns were switched! Go back and load
the corrected data frame

data <- read.table("featurecounts_results.formatted.fixed.txt",header=TRUE)

Rerun all steps in the analysis, including the PCA, and verify that things look as
expected.
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DESeq2 Work�ow

https://hbctraining.github.io/DGE_workshop
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Modeling count data

DESeq2 will seek to fit a probability distibution to each gene we measured and
perform a statistical test to determine whether there is a difference between
conditions
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Since our mean is not equal to the
variance, a Negative binomial
distribution is used

2 parameters NB(  , )
 mean,  dispersion

allows extra source of variation

Modeling count data

This plot shows the relationship between the mean and variance across WT
replicates for each gene we measured:

Dispersion is a measure of spread or variability in the data between biological
repliates
Genes with high dispersion will have lower significance than genes with low
dispersion for a given difference between conditions

μ α
μ α

45 / 62



Viewing the per-gene dispersion estimates
You can see the dispersion estimates

plotDispEsts(dds)
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Viewing the gene-wise dispersion estimates
What DESeq is doing:

1. Estimates dispersion per gene using biological replicates
2. Fit a mean-dispersion curve
3. Change dispersion estimates for genes that are far from the curveto avoid false

positives 

Love et al Genome Biology 2014
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Testing for Di�erential Expression

https://hbctraining.github.io/DGE_workshop
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Creating contrasts and running a Wald test
The null hypothesis: log fold change = 0 for across conditions

P-values are the probability of rejecting the null hypothesis for a given gene, and
adjusted p values take into account that we've made many comparisons:

## Creating contrasts
contrast <- c("condition", "SNF2", "WT")
res_unshrunken <- results(dds, contrast=contrast)
summary(res_unshrunken)

out of 6391 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 485, 7.6%
LFC < 0 (down)     : 637, 10%
outliers [1]       : 3, 0.047%
low counts [2]     : 371, 5.8%
(mean count < 5)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
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Shrinkage of the log2 fold changes
One more step where information is used across genes to avoid overestimates of
differences between genes with high dispersion

Love et al Genome Biology 2014
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Shrinkage of the log2 fold changes
One more shrinking step - shrink the estimated log2 fold changes 
This is not done by default, so we run the code:

res <- lfcShrink(dds, contrast=contrast, res=res_unshrunken)

Love et al Genome Biology 2014
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MA plot: Log ratio vs. average for comparison
Shows the mean of the normalized counts versus the log2 foldchanges for all
genes tested
Genes that are significantly DE are colored to be easily identified and should
span the range of fold changes

plotMA(res_unshrunken, ylim=c(-2,2))
plotMA(res, ylim=c(-2,2))
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Exploring results
A summary of the results:

summary(res)

out of 6391 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 1464, 23%
LFC < 0 (down)     : 1623, 25%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
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Exploring results
head(results)

log2FoldChange =  Estimated from the model

padj - Adjusted pvalue for the probability that the log2FoldChange is not zero

log2
SNF2Counts

WTCounts
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Review DESeq work�ow
These comprise the full workflow:

# Setup DESeq2
dds  <- DESeqDataSetFromMatrix(countData = data, colData = meta, design = ~ condition)
# Run size factor estimation, dispersion estimation, dispersion shrinking, testing
dds  <- DESeq(dds)
# Tell DESeq2 which conditions you would like to output
contrast <- c("condition", "SNF2", "WT")
# Output results to table
res_unshrunken <- results(dds, contrast=contrast)
# Shrink log fold changes for genes with high dispersion
res <- lfcShrink(dds, contrast=contrast, res=res_unshrunken)
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Plotting a single gene SNF2 (YOR290C open reading frame)
## simple plot for a single gene
plotCounts(dds, gene="YOR290C", intgroup="condition")

56 / 62



Filtering to �nd signi�cant genes

Let's filter the results table for padj < 0.05

padj.cutoff <- 0.05 
significant_results <- results[which(results$padj < padj.cutoff),]

We can export these results to a table:

file_name='results_pval_0.05.txt'
write.table(significant_results, file_name)
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Plot multiple genes in a heatmap
Sort the rows from smallest to largest padj and take the top 50 genes:

significant_results_sorted <- significant_results[order(significant_results$padj), ]
significant_genes_50       <- rownames(significant_results_sorted[1:50, ])

We now have a list of genes

significant_genes_50

"YGR234W" "YDR033W" "YOR290C" "YML123C" ...

But we need to find the counts corresponding to these genes. To extract the counts
from the rlog transformed object

rld_counts <- assay(rld)

Select by row name using the list of genes:

rld_counts_sig <- rld_counts[significant_genes_50, ]
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pheatmap(rld_counts_sig,    
         cluster_rows = T, 
         show_rownames = T,
         annotation = meta, 
         border_color = NA, 
         fontsize = 10, 
         scale = "row", 
         fontsize_row = 8, 
         height = 20)

Plot multiple genes in a heatmap
pheatmap has many customizable options 
scale = "row" - mean center each row and divides by the standard deviation to give
[-1,1] values
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Note on Functional Enrichment

 
A great tutorial to follow:
https://hbctraining.github.io/DGE_workshop/lessons/09_functional_analysis.html
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What should I do with my �les?
Files will remain in the training directory until the end of May, when they will be
removed.

If you have a cluster lab storage space, e.g.:

/cluster/tufts/<your lab name>/<your user name>/

You can copy your work like this:

cd /cluster/tufts/bio/tools/training/your-user-name/
cp -r bioinformatics-rnaseq/ /cluster/tufts/your-lab-name/your-user-name/

Otherwise, you can try to copy your data into your home directory, if there's space:

rm ~/bioinformatics-rnaseq #no trailing slash
cp -r /cluster/tufts/bio/tools/training/your-user-name/bioinformatics-rnaseq/ ~/
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We'd like to hear from you

tts-research@tufts.edu or rebecca.batorsky@tufts.edu

Short survey by email after course

Thanks for participating!
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